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Optimization of Structural Topology in the High-Porosity Regime 

Final progress repoH on DAAD19-00-1-0384, July 1, 2000 - June SO, 2003 

Robert V. Kohn 
Courant Institute of Mathematical Sciences, NYU 

251 Mercer Street 
New York, NY 10012 

Abstract 

This project applied homogenization-based methods to the optimization of high-porosity 
materials and structures. We have shown that when stiffness is preferred, extremal effec- 
tive behavior does not require multiscale architecture in the high-porosity limit. Rather, 
extremal structures can be found within the simple class of closed-cell composites we call 
"single-scale laminates." 

Concerning the design of optimal materials, we address the following problem: given a 
"target Hooke's law" Ci, find the minimum density of a porous composite whose effective 
Hooke's law C satisfies C > Ci. We focus on the high-porosity limit, i.e. the leading- 
order behavior when Ci is close to 0. Our assertion is that minimizing density over all 
composites is equivalent to minimizing it over single-scale laminates. Moreover finding an 
optimal single-scale laminate is easy - it amounts to a problem of semidefinite programming. 
This optimization is rather degenerate - its solution is far from unique - so it is natural 
to impose a selection criterion, for example maximizing manufacturability. A numerically 
effective selection scheme is to maximize a linear function over the class of eligible single- 
scale laminates. This involves solving a linear programming problem, and leads to single- 
scale laminates using just a few lamination directions. 

For the design of optimal structures, we apply a similar strategy. However in this 
setting the target Hooke's law varies in space on the macroscopic length scale. Therefore it 
is natural to seek optimal single-scale laminates whose layering directions vary continuously 
in space. This requires a different, more global selection criterion. Our solution involves 
solving a quadratic programming problem - minimizing, roughly speaking, the Dirichlet 
norm of the gradient of the single-scale laminates, subject to the constraint that they be 
pointwise optimal. 

Subject terms: optimal design, composite materials, high-porosity structures 



1    Problem statement 

This project unified two themes that were previously considered quite separate: (i) the 
analysis of ultra-Hghtweight structures, and (ii) homogenization-based optimal design. 

The first theme has attracted a lot of attention in the materials community [6, 8, 10]. 
Work has mainly focused on analyzing specific classes of light-weight structures, of bio- 
logical, physical, or synthetic origin - such as bone, wood, periodic lattices, and random 
foams. 

The second theme has attracted a lot of attention in the mathematics community [1,4, 5]. 
Work has mainly focused on minimizing weight and maximizing stiffness. Remarkably, the 
mathematical theory does much more than merely optimize the sizing of structural members; 
it also identifies the optimal structural topology. 

Our insight was that the homogenization-based theory should simplify in the high- 
porosity limit, where the goal is to design ultra-lightweight structures. This has proved to 
be the case. In general, the optimal microstructures provided by the homogenization-based 
theory are complicated, and in some regimes they require multiple length scales. In the 
high-porosity Hmit, however, we have found that relatively simple structures are optimal to 
leading order. 

Our accomplishments go far beyond specializing the homogenization-based theory to the 
high-porosity regime. The optimal structures are "single-scale laminates," whose Hooke's 
laws depend linearly on the laminate thicknesses. Numerical structural optimization in this 
regime is much easier than the general case, because it reduces to convex optimization. 

The simplest version of the design problem minimizes density over the class of porous 
composites whose effective Hooke's law C satisfies C > Ci, for a given "target Hooke's 
law" Ci. To focus on the high-porosity limit, we study the leading-order behavior when 
C\ is close to 0. When we say that "the optimal structures are single-scale laminates" we 
mean that minimizing density over all porous composites is equivalent to minimizing it over 
single-scale laminates. Numerically, this reduces to a problem of semidefinite programming. 

The optimization over single-scale laminates is rather degenerate: there are, in fact, 
many optimal structures. It is therefore natural to impose a selection criterion that favors 
manufacturability. A numerically effective selection scheme is to maximize a linear function 
over the class of eligible single-scale laminates. This involves solving a linear programming 
problem, and leads to single-scale laminates that use just a few lamination directions. 

A similar strategy can be applied to the design of (heterogeneous) structures. In that 
setting, however, the target Hooke's law varies in space on the macroscopic length scale. 
Therefore it is natural to seek optimal structures which are locally single-scale laminates, 
with continuously varying layer directions and densities. This is a more global selection 
criterion. Our approach to solving it minimizes, roughly speaking, the Dirichlet norm of 
the gradient of the single-scale laminates, subject to the constraint that they be pointwise 
optimal. This reduces numerically to a large quadratic programming problem. 



2    Summary of main results 

2.1    Definition of a single-scale laminate 

We focus exclusively on high-porosity composites made from a fixed elastic material with 
Hooke's law A. 

The simplest example of such a composite is a layered structure with layering direction 
k and density 6. Its microstructure consists of layers of material A, separated by void. 
The layers are perpendicular to the unit vector k, with thicknesses and spacing chosen so 
the overall volume fraction of material is 6 > 0. (The high-porosity limit corresponds to 
9 -^ 0.) The effective Hooke's law of the resulting composite is clearly degenerate, since 
stress is only produced by the components of the strain "tangent to the layers." Its formula 
is well-known [1, 9]. The Hooke's law is proportional to 9, so it has the form 9f{k), where 
the function / is defined on unit vectors, taking values in the space of Hooke's laws. When 
A is isotropic, i.e. A£, - 2^Ai + A^ttrOI, we have 

For a general, possibly anisotropic A, the corresponding formula is 

/(A:)e = ^^/'n^-x/.H.(fc)A^/'e, (1) 

where Hx denotes orthogonal projection onto the subspace X, and W{k) is the space of 
stresses compatible with layering direction k: 

W{k) = {r] : r]-k = 0}. 

The structures considered above have just one family of layers, i.e. a single layering 
direction. Our single-scale laminates are similar, but they have layers in many directions 
rather than just one. A single-scale laminate is characterized by its 

layering directions ki,... ,kp, 

which must be unit vectors, and its 

relative densities ti,...,tp, 

which must be positive with ti + ... + tp = 1. The microstructure consists of p families 
of walls, the ith family being orthogonal to ki with density tiO. In the high-porosity limit, 
when 0 —i- 0, the volume where the walls overlap is negligible, so the density of the entire 
structure is, to leading order, 9ti + ... + 9tp = 9. 

Some special cases are very familiar. In two space dimensions, a square lattice is a 
single-scale laminate with fci = (1,0), ^2 = (0,1) and ti = <2 = 1/2. Similarly, a triangular 
lattice is realizable as a single-scale laminate with ti — t2 = t^ — 1/3. We have specified 
the layering directions but not their positions relative to one another; the Kagome lattice 
[11] has the same layering directions and densities as the triangular lattice, but only two 
members meet at each vertex; it too is a single-scale laminate. Our results show that the 



Hooke's law depends only on the layering directions and densities in the high-porosity limit; 
other microstructural details, like those that distinguish the Kagome and triangular lattices, 
are irrelevant at leading order. 

Notice that in three space dimensions a single-scale laminate consists of walls. It cannot 
have one-dimensional members. Thus a closed-cell cubic structure with walls orthogonal to 
each coordinate axis is an example of a single-scale laminate; however a truss-like structure 
with struts along the coordinate axes and diagonals is not a single-scale laminate. Our 
results show that when maximal stiffness and minimum weight are preferred, it is not a 
good idea to consider truss-Hke structures in 3D. The intuitive reason is this: a wall is 
multifunctional - it resists stresses in every in-plane direction - whereas a one-dimensional 
member can only resist stress in its tangent direction. 

2.2 The Hooke's law of a single-scale laminate 

The effective Hooke's law of a single-scale laminate has an extremely simple formula: it is 
simply 

c = eJ2uf{ki). (2) 

This is a bit surprising. Each family of walls can be viewed as a substructure, with scaled 
Hooke's law tif{ki). Equation (2) says their Hooke's laws are additive. This would be clear 
if the walls were independent, like springs in parallel. But they are not entirely independent, 
because walls in different directions intersect. These intersections would appear to impose 
additional constraints, since the elastic displacement must be continuous. The assertion of 
(2) is that these constraints are negligible at leading order in the high-porosity limit. 

We briefly sketch the proof of (2). One inequality is easy: if the effective Hooke's law is 
Cthen 

p 

i=l 

since the right hand side is what we get by ignoring the constraint of kinematic com- 
patibility at the intersections of the walls. The opposite inequality is proved using the 
Hashin-Shtrikman variational principle, which gives an upper bound for C in terms of the 
iJ-measure associated with its microstructure. In the high-porosity limit this iJ-measure is 
easy to compute and the bound reduces to C < OJ^^^i tif{ki)- 

2.3 Optimality of single-scale laminates 

We claim that when the goal is optimal design for minimum weight in the high-porosity 
regime, if in addition stiffness is preferred, then there is no need to look beyond the class 
of single-scale laminates. 

Here is a mathematically precise statement of this result. Consider any porous compos- 
ites made from material A and void, with overall volume fraction 6 of material, and let Ci 
be its effective Hooke's law. We claim there exists a single-scale laminate with the same 
volume fraction 6 (to leading order) whose Hooke's law C satisfies 

C>Ci. 



Thus if stiffness is preferred (i.e. if C is at least as good as Ci for the given design purpose) 
the search for minimum-weight structures in the high-porosity hmit can safely be restricted 
to single-scale laminates. 

The proof of this result is parallel to Avellaneda's demonstration that optimal structures 
can be found, at any density, within the class of sequential laminates [2]. The main novelty 
is the observation that in the high-porosity limit there is no need for separation of scales. 
Indeed, for any sequential laminate we can consider the single-scale laminate with the same 
layering directions and densities; their Hooke's laws turn out to be identical at leading order 
as 61-^0. 

Besides demonstrating optimality, the equivalence of sequential laminates and single- 
scale laminates in the high-porosity limit has a useful byproduct. It leads to an algorithm 
for calculating, for any given macroscopic stress or strain, the local stress and strain in each 
wall of a single-scale laminate. 

2.4 Numerical optimization over single-scale laminates 

We have shown that for certain optimal design problems, there is no need to look beyond 
the class of single-scale laminates. Now let's take advantage of this observation. 

Let Ci be a given "target" Hooke's law, and consider the minimum-weight design of 
a single-scale laminate subject to the constraint that its Hooke's law is stiffer than Ci. 
Mathematically: this amounts to the optimization 

{p p "\ 
Y^Ti  : Ti > 0; \ki\ = 1; Y.'^ifiki) >Ci\. (3) 

Here TJ plays the role of OU, so X]i TJ = ^ is the density of the composite. Both the objective 
and the constraints are homogenous of degree one, so it is not actually necessary that Ci 
be near 0. Rather, Ci represents the leading order behavior of the desired single-scale 
laminate, and Tj/J2^^iTi represents the relative density of the jth wall. We do not know 
in advance which layering directions will be useful, so the vectors {ki}^_i should be evenly 
distributed on the unit sphere (for 3D calculations) or the unit circle (in 2D). All our 
numerical experiments were done in 2D. 

The unknowns in (3) are {TJ}^^;^. (We hold the vectors fcj fixed). At first (3) looks like 
a linear programming problem, since the objective is linear and each TJ is nonnegative. But 
actually it is a semidefinite programming problem., since the constraint Y^^i'^'ifif^i) ^ ^l 
asks that a certain matrix (depending linearly on the TJ) be positive semidefinite. No 
problem: this class of convex optimization problems is now well understood. We solved (3) 
using a standard software package based on an interior point method. 

2.5 Selecting a single-scale laminate with few layering directions 

In practice, the solution of (3) found using the interior point method has TJ > 0 for every i. 
This is not surprising - it is in fact what we expect of an interior point scheme. 

The numerical solution is robust, and it reflects the symmetries of Cf, for example, if 
Ci is isotropic and the directions fcj are evenly spaced then the optimal Ti are independent 
of i. 



Practically speaking, however, the manufacuturability of a single-scale laminate should 
be related to the number of distinct layering directions. Therefore it is natural to seek a 
different solution in which most of the TJ are 0. An effective means for achieving this is to 
maximize the density of the layers in a particular direction. We do this by solving 

ri   :  Ti > 0; ^Ti = 9; ^nfiki) = C\ (4) 
i=l i=l J 

where C is the Hooke's law of the single-scale-laminate obtained by solving (3) and 9 is its 
density. 

The optimization (4) is a standard linear programming problem. Indeed, its unknowns 
Tj are nonnegative. The constraint XliLi Tifih) = C is now understood pointwise, so it is 
simply a collection of linear equality constraints. The constraint is feasible, by the choice 
of C, and the objective is linear. 

The solution of (4) is observed numerically to have just a few nonzero TJ'S. This is 
no surprise: the optimal value of a linear program is achieved, barring degeneracy, at an 
extreme point of the feasible set. Therefore solving (4) should drive as many TJ as possible to 
zero; the number that remain nonzero is determined by the number of equality constraints. 

The ordering of the layering directions is of course arbitrary. As we vary the direction of 
ki, (4) produces a large family of different single-scale laminates with few layering directions 
and the same Hooke's law C. 

2.6    Continuous spatial variation 

We have focused thus far on problems of material design: for a given target Hooke's law, 
we have sought minimum-weight structures that achieve (or exceed) the target rigidity to 
leading order in the high-porosity Hmit. The target Hooke's law was constant, and the 
optimal single-scale laminates were spatially periodic. 

What about problems of structural design, where the loads and boundary conditions 
are not uniform on the macroscopic length scale? The homogenization-based approach to 
structural optimization addresses such problems in two steps: 

(1) identify the spatially-varying macroscopic Hooke's law of an optimal structure, then 

(2) construct an associated microstructure, by using composites whose microstructural 
characteristics vary on the macroscopic length scale. 

The steps are of course coupled, since the first requires that we know the "cost" of achiev- 
ing a given Hooke's law. An appealing implementation of step (1) was given in [3] using 
semidefinite programming. But that work used a simple phenomenological formula for the 
"cost" of a Hooke's law, and made no attempt to address step (2). 

Our results complement those of [3] by providing a rational cost function. For example, 
suppose the goal is to minimize weight with constraints on the compliance of the struc- 
ture under a variety of specified loads. Then rigidity is preferred, and our Eqn (3) gives 
the cost associated with any Hooke's law Ci in the high-porosity limit. The resulting im- 
plementation of step (1) would use a fixed discretization of the unit sphere {kiYi-i- '^^^ 
parameters TJ would now be functions of x, defined at all points of the macroscopic domain 



n occupied by the structure (more precisely: at grid or nodal points of a finite-difference or 
finite-element discretization of this domain). The local Hooke's law of the stucture is then 
C{x) = Y!d=iTi{x)f{ki), and the numerical problem is to minimize /j^X^i'^i subject to (a) 
the pointwise scalar constraints Ti{x) > 0, and (b) constraints on the structure's compliance 
under each specified load. 

We did not actually implement the optimization just described. Rather, we have focused 
on what to do afterward, i.e. how to accomplish step (2). The output of step (1) would 
be the spatially-varying thickness parameters Ti{x) of a single-scale laminate. We would 
like to specify, from such data, a design for entire structure that is (a) consistent with the 
optimal macroscopic density 6{x) = J2Ti{^) and Hooke's law C{x) = J2'''i{^)f{ki), and (b) 
relatively simple. 

The simplification scheme discussed above in Eqn (4) can of course be applied pointwise. 
As x varies, this amouts to solving a family of hnear programs with the same objective but 
varying constraints. The result is a family of single-scale laminates whose layer directions 
are piecewise constant in x. This behavior is easy to understand. Indeed, each extreme 
point of the admissible set for (4) corresponds to a selection of nonzero TJ'S. AS X varies, 
the optimum stays for a while at one extreme point, then eventually jumps to another one. 
The layering directions are constant in the region associated with a given extreme point; at 
the boundary of this region one of the layering directions disappears (its TJ goes to 0) and 
another one emerges in its place. 

Perhaps the structures obtained this way could be manufactured and used. However our 
instinct is that discontinuities should be avoided whenever possible. Therefore we sought an 
alternative selection scheme which would make the layering directions and their thicknesses 
vary continuously with x. For simplicity we took Cl to be an interval [0,1], and we chose 
C{x) by taking Ci{x) to interpolate linearly between two Hooke's laws ^o and Ai, then 
solving (3) at each spatial grid point. 

To promote continuity one must discuss all values of x simultaneously. So the unknown is 
really a parametrized measure TX, defined iov x e Cl and taking values in the space of positive 
measures on the unit sphere S, such that Jg dTx{k) = 6{x) and Js f{k)dTx{k) = C{x) for 
all X. We want designs with few distinct layering directions, so it is natural to restrict r-c 
to consist of a small number (say, M) of point masses. The selection scheme should favor 
continuous dependence, so it is natural to optimize a sort of Dirichlet norm 

N-l 

min ^ dist^ {T^J , TX^+I ). (5) 
j=i 

Here {xj}jLi are grid points in Cl; each TX^ is a positive measure with at most M point 
masses; and we must respect pointwise linear constraints to assure that TXJ has the right 
mass and Hooke's law at each grid point. 

To specify the scheme completely, we must say (a) how to discretize the rc^.'s, and (b) 
how to evaluate dist{Txj,Txj+-^)- The answer to (a) is simple: we represent each measure TXJ 

by an unordered collection of pairs (/ci, mi),... {k^, I^M) where each ki is a unit vector and 
mi > 0. (The measure has mass rui at unit vector ki.) As for (b): we found it convenient 
to take 

dist(r,T') = ||/*(r-r')||i2(5) 



where / is positive, unimodal function with L^ norm one. With these interpretations the 
optimization (5) becomes a large quadratic programming problem. It can be solved quite 
easily using a standard QP code. Our numerical experiments show that the resulting designs 
have the desired characteristics: they are locally single-scale laminates, which achieve the 
desired density and Hooke's law using just a few layering directions which vary continuously 
with X. 

2.7    Discussion 

Our goal was to exploit homogenization-based methods for the optimal design of high- 
porosity structures. We have in large measure achieved this goal, for problems in which 
stiffness is preferred and the objective is weight minimization. 

There are, of course, optimal design problems where stiflFness is not preferred. The 
design of a composite for minimum Poisson's ratio is an example. Assuming isotropy, this 
objective requires a large shear modulus but a small bulk modulus. It is known that a 
porous composite can have any Poisson's ratio consistent with positivity of the Hooke's law 
[7]. However the Hooke's law of an isotropic single-scale laminate is entirely determined 
by its density, and its shear and bulk modulus achieve the (high-porosity limit of the) 
Hashin-Shtrikman bounds. Thus our method cannot be used to optimize the weight of a 
negative-Poisson-ratio material. If we solve (3) with a target Hooke's law Ci for which 
Poisson's ratio is negative, the resulting single-scale laminate will have a positive Poisson 
ratio. This difficulty is not special to the high-porosity regime: it is a well-known limitation 
of the homogenization-based method [1]. 

The subject remains at a very preliminary stage of development. We have suggested 
combining our results with the method of [3] but this proposal remains to be implemented. 
We have shown how to select simple single-scale laminates with continuous spatial depen- 
dence, but we have not examined the properties of the resulting structures - for example 
their resistance to buckling. Thus, like any good research project, our investigation has 
raised as many questions as it answered. 

3    Publications and presentations 

Papers published in refereed journals: We intend to write at least two articles based 
on this work. One, targeted toward the applied mathematics community working in ho- 
mogenization and structural optimization, will emphasize the theory. The other, targeted 
toward the large mechanics community doing structural optimization, will emphasize the 
conclusions and numerical examples. 

Conference proceedings: 

1. Blaise A. Bourdin and Robert V. Kohn, Extremal light-weight microstructures, Proc. 
15th ASCE Engineering Mechanics Conference, June 2-5, 2002, Columbia University, 
New York 

Conference presentations without proceedings: 



1. Blaise A. Bourdin and Robert V. Kohn, Elastically optimal micro structures in the 
high-porosity regime, Fourteenth U.S. National Congress on Theoretical and Applied 
Mechanics, Blacksburg, VA, June 23-28 2002. Invited talk in Symposium on Advances 
on Composite Materials. 

2. Blaise Bourdin and Robert V. Kohn, Extremal high-porosity microstructures, First 
Joint Meeting of the AMS and UMI, Pisa, Italy, June 12-16, 2002. Invited talk in 
Special Session "Some Mathematics around Composites." 

3. Blaise Bourdin and Robert V. Kohn, Elastically optimal microstructures in the high- 
porosity regime, Fourth SIAM Conference on Mathematical Aspects of Materials Sci- 
ence, May 23-26, 2004. Invited talk in the Minisymposium "Composites and Poly- 
crystals." 

4 Scientific personnel 

The project budget was devoted almost exclusively to salary for a postdoctoral researcher, 
Blaise Bourdin. Blaise is now a tenure-track Assistant Professor of Mathematics at Louisiana 
State University. 

5 Report of inventions 

This project did not lead to new patents or inventions. 

6 Service 

The PI chaired the Board of Visitors at the May, 2001 Program Review of ARO's Basic 
Research Program in Mathematics. 

References 

[1] G. Allaire, Shape Optimization by the Homogenization Method, Springer-Verlag, 2002 

[2] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, 
SIAM J. Appl. Math. 47 (1987) 1216-1228 

[3] A. Ben-Tal, M. Kocvara, A. Nemirovsky and J. Zowe, Free material design via semidefi- 
nite programming: the multiload case with contact conditions, SIAM J. Optim. 9 (1999) 
813-832 

[4] M.P. Bendsoe, Optimization of Structural Topology, Shape, and Material, Springer- 
Verlag, 1995 

[5] A.V. Cherkaev, Variational Methods for Structural Optimization, Springer-Verlag, 2000 

[6] R. Christensen, Mechanics of cellular and other low-density materials. Int. J. SoHds 
Structures 37 (2000) 93-104 



[7] A.V. Cherkaev and G.W. Milton,  Which elasticity tensors are realizable?, ASME J. 
Eng. Mater. Techn. 117 (1995) 483-493 

[8] A.G. Evans, Lightweight materials and structures, MRS Bulletin 26 (2001) 790-797 

[9] G.A. Prancfort and F. Murat, Homogenization and optimal hounds in linear elasticity, 
Arch. Rational Mech. Anal. 94 (1986) 307-334 

[10] L.J. Gibson and M.F. Ashby, Cellular Solids:  Structure and Properties, Cambridge 
Univ. Press, 2nd edition, 1997 

[11] S. Hyun and S. Torquato, Optimal and manufacturable two-dimensional, Kagome-like 
cellular solids, J. Mater. Research 17 (2002) 137-144 

10 


